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Review: Channel Encoder and Decoder
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System Model for Chapter 5
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Vector Notation
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
֊𝐯 : column vector

 പ𝐫: row vector

 Subscripts represent element indices inside individual 
vectors.

 𝑣𝑖 and 𝑟𝑖 refer to the ith elements inside the vectors ֊𝐯 and പ𝐫, 
respectively.

 When we have a list of vectors, we use superscripts in 
parentheses as indices of vectors. 


֊𝐯

1
, ֊𝐯

2
, … ,֊𝐯

𝑀
is a list of M column vectors

 പ𝐫 1 , പ𝐫 2 , … , പ𝐫 𝑀 is a list of M row vectors


֊𝐯

𝑖
and പ𝐫 𝑖 refer to the ith vectors in the corresponding lists.

𝑣1
𝑣2
⋮
𝑣𝑖
⋮
𝑣𝑛

𝑟1, 𝑟2, … , 𝑟𝑖 , … 𝑟𝑛

0, 0: the zero vector

(the all-zero vector)

1, 1: the one vector

(the all-one vector)



Review: Channel Decoding
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 Recall

1. The MAP decoder is the optimal decoder. 

2. When the codewords are equally-likely, the ML decoder the same 
as the MAP decoder; hence it is also optimal.

3. When the crossover probability of the BSC p is < 0.5, 
ML decoder is the same as the minimum distance decoder. 

 In this chapter, we assume the use of minimum distance 
decoder.

 പො𝐱 പ𝐲 = arg min
പ𝐱
𝑑 പ𝐱, പ𝐲

 Also, in this chapter, we will focus 

 less on probabilistic analysis,

 but more on explicit codes.
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Review: Block Encoding
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 We mentioned the general form of channel coding over BSC.

 In particular, we looked at the general form of block 

codes.

 (n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

 Assume n > k

 Rate: 𝑅 =
𝑘

𝑛
.

Block Encoder

k bits k bits k bits n bits n bits n bits

Recall that the capacity of BSC is 𝐶 = 1 − 𝐻 𝑝 .

For  𝑝 ∈ 0,1 , we also have  𝐶 ∈ 0,1 . 

Achievable rate is < 1.

Max. achievable rate

Code length

“Dimension” of the code

codewords “messages”



System Model for Section 5.1
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C
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 C = the collection of all codewords for the code considered

 Each n-bit block is selected from C.

 The message (data block) has k bits, 

so there are 2k possibilities.

 A reasonable code would not assign the same codeword to 

different messages.

 Therefore, there are 2k (distinct) codewords in C.

 Ex. Repetition code with n = 3



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication
of bits:

 These are  modulo-2 addition and modulo-2 multiplication, 
respectively. 

 The operations are the same as the exclusive-or (XOR) 
operation and the AND operation.
 We will simply call them addition and multiplication so that we can 

use a matrix formalism to define the code.

 The two-element set {0, 1} together with this definition of 
addition and multiplication is a number system called a finite 
field or a Galois field, and is denoted by the label GF(2).

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1





Modulo operation
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 The modulo operation finds the remainder after division of 

one number by another (sometimes called modulus).

 Given two positive numbers, 𝑎 (the dividend) and 𝑛 (the 

divisor), 

 𝒂𝐦𝐨𝐝𝐮𝐥𝐨 𝒏 (abbreviated as 𝒂𝐦𝐨𝐝 𝒏 ) is the remainder of the 

division of 𝑎 by 𝑛. 

 “83 mod 6” = 5

 “5 mod 2” = 1

 In MATLAB, mod(5,2) = 1.

 Congruence relation

 5 ≡ 1 (mod 2)

6

23

836

18

5

13
divisor

quotient

dividend

remainder
2 5

4

1

2
divisor

quotient

dividend

remainder



GF(2) and modulo operation
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 Normal addition and multiplication (for 0 and 1):

 Addition and multiplication in GF(2):

0 1 0 1

0 0 1 0 0 0

1 1 2 1 0 1

+ 

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1

 •



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

 Note that 0

1

0

x x

x x

x x

x x

 =

 =

 =

− =The above property implies

By definition, “-x” is something that, when added with x, gives 0.

 Extension: For vector and matrix, apply the operations to the elements 
the same way that addition and multiplication would normally apply 
(except that the calculations are all in GF(2)).

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1

 •



Examples
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 Normal vector addition:

 Vector addition in GF(2):

1 −1 2 1 + −2 3 0 1 = −1 2 2 2

1 0 1 1 ⊕ 0 1 0 1 = 1 1 1 0

Alternatively, one can also apply 

normal vector addition first, 

then apply “mod 2” to each 

element:

1 0 1 1 ⊕ 0 1 0 1

= 1 1 1 2
mod 2

1 1 1 0



Examples
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 Normal matrix multiplication:

 Matrix multiplication in GF(2):

7 4 3
2 5 6
1 8 9

−2 4
3 −8
−7 6

=
−23 14
−31 4
−41 −6

7 × −2 + 4 × 3 + 3 × −7 = −14 + 12 + −21

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

=
0 1
1 0
0 0

1 ∙ 1  0 ∙ 0  1 ∙ 1 = 101 Alternatively, one can also apply normal 

matrix multiplication first, then apply 

“mod 2” to each element:

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

=
2 1
1 0
2 2

mod 2 0 1
1 0
0 0



BSC and the Error Pattern
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 For one use of the channel,

 Again, to transmit k information bits, the channel is used n

times. 

BSCx y

Encoderb x BSC y

= y x e

error pattern

1 k 1 n

Its nonzero elements mark the 

positions of transmission error in y



Linear Block Codes
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 Definition: C is a (binary) linear (block) code if and 

only if C forms a vector (sub)space (over GF(2)). 

 Equivalently, this is the same as requiring that

 Note that any (non-empty) linear code C must contain 0.

 Ex. The code that we considered in Problem 5 of HW3 is

Is it a linear code?

In case you forgot about the concept of vector space,…

if പ𝐱 1 and പ𝐱 2 ∈ C, then പ𝐱 1 പ𝐱 2 ∈ C.

C = 00000,01000,10001,11111



Linear Block Codes: Motivation (1)
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 Why linear block codes are popular?

 Recall: General block encoding

 Characterized by its codebook.

 Can be realized by combinational/combinatorial circuit.

 If lucky, can used K-map to simplify the circuit.

 പ 1
𝐬പ 2

𝐬പ  

𝐬പ  

𝐱പ 1

𝐱പ 2

𝐱പ  

𝐱പ  

 = 2𝑘 possibilities

Choose  = 2𝑘 from 

2𝑛 possibilities to be 

used as codewords.
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Linear Block Codes: Motivation (2)
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 Why linear block codes are popular?

 Linear block encoding is the same as matrix multiplication.

 See next slide.

 The matrix replaces the table for the codebook.

 The size of the matrix is only 𝑘 × 𝑛 bits.

 Compare this against the table (codebook) of size 2𝑘 × 𝑘 + 𝑛 bits for 

general block encoding.

 Linearity  easier implementation and analysis

 Performance of the class of linear block codes is similar to 

performance of the general class of block codes.

 Can limit our study to the subclass of linear block codes 

without sacrificing system performance.



Linear Block Codes: Generator Matrix

34

For any linear code, there is a matrix

called the generator matrix

such that, for any codeword പ𝐱, there is a message vector ഫ𝐛
which produces പ𝐱 by

𝐆 =

പ𝐠
1

പ𝐠
2

⋮

പ𝐠
𝑘

𝑘×𝑛

പ𝐱 = ഫ𝐛𝐆 =෍

𝑗=1

𝑘

𝑏𝑗ഫ𝐠
𝑗

mod-2 summation

Note: 

(1) Any codeword can be expressed as a linear combination of the 

rows of G

(2) 𝐶 = ഫ𝐛𝐆: ഫ𝐛 ∈ 0,1 𝑘 Note also that, given a matrix 𝐆, the (block) 

code that is constructed by (2) is always linear.



Example
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 Find the codeword for the message b = [1 0 0]

 Find the codeword for the message b = [0 1 1]

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 0

 
 

=  
 
 

G



Example
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 Find the codeword for the message b = [1 0 0 0]

 Find the codeword for the message b = [0 1 1 0]

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 0 1 0 1 1 0

1 0 1 0 1 0 1

 
 
 =
 
 
 

G



Linear Block Codes: Examples
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 Repetition code: പ𝐱 = 𝑏 𝑏 ⋯ 𝑏
 𝐆 = 1 1 ⋯ 1

 പ𝐱 = ഫ𝐛𝐆 = 𝑏𝐆 = 𝑏 𝑏 ⋯ 𝑏

 𝑅 =
𝑘

𝑛
=

1

𝑛

 Single-parity-check code: പ𝐱 = ഫ𝐛 ;෍
𝑗=1

𝑘

𝑏𝑗

 𝐆 = 𝐈𝑘×𝑘; ഫ𝟏
𝑇

 𝑅 =
𝑘

𝑛
=

𝑘

𝑘+1

parity bit

𝑏 𝐱
0 0 0 0

1 1 1 1

𝑏 𝐱
0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0



Vectors representing 3-bit codewords
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Triple-repetition code Parity-check code

Representing the codewords in the two examples on the previous slide as vectors:



Even Parity vs. Odd Parity
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 Parity bit checking is used occasionally for transmitting ASCII 

characters, which have 7 bits, leaving the 8th bit as a parity 

bit.

 Two options:

 Even Parity: Added bit ensures an even number of 1s in each 

codeword.

 A: 10000010

 Odd Parity: Added bit ensures an odd number of 1s in each 

codeword.

 A: 10000011

Related Idea:



Even Parity vs. Odd Parity
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 Even parity and odd parity are properties of a codeword (a 

vector), not a bit.

 Note: The generator matrix 𝐆 = 𝐈𝑘×𝑘; ഫ𝟏
𝑇 previously 

considered produces even parity codeword

പ𝐱 = ഫ𝐛 ;෍

𝑗=1

𝑘

𝑏𝑗

 Q: Consider a code that uses odd parity. Is it linear?



Error Control using Parity Bit
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 If an odd number of bits (including the parity bit) are 

transmitted incorrectly, the parity will be incorrect, thus 

indicating that a parity error occurred in the transmission. 

 Ex. 

 Suppose we use even parity. 

 Consider the codeword പ𝐱 = 10000010

 Suitable for detecting errors; cannot correct any errors



The ASCII Coded Character Set
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[The ARRL Handbook for Radio Communications 2013]

0 16 32 48 64 80 96 112

US UK

(American Standard Code for Information Interchange)



Error Detection
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 Error detection: the determination of whether errors are present in a 
received word

 usually by checking whether 
the received word is one of the 
valid codewords.

 When a two-way channel exists between source and destination, the 
receiver can request retransmission of information containing 
detected errors. 

 This error-control strategy is called automatic-repeat-request (ARQ).

 An error pattern is undetectable if and only if it causes the received 
word to be a valid codeword other than that which was transmitted.

 Ex: In single-parity-check code, error will be undetectable when the number 
of bits in error is even.

Two types of error control:

1. error detection

2. error correction

 പ 1
𝐬പ 2

𝐬പ  

𝐬പ  

𝐱പ 1

𝐱പ 2

𝐱പ  

𝐱പ  

 = 2𝑘 possibilities

Choose  = 2𝑘 from 

2𝑛 possibilities to be 

used as codewords.



Error Correction

44

 In FEC (forward error correction) system, when the 

decoder detects error, the arithmetic or algebraic structure

of the code is used to determine which of the valid 

codewords was transmitted.

 It is possible for a detectable error pattern to cause the 

decoder to select a codeword other than that which was 

actually transmitted. The decoder is then said to have 

committed a decoding error.



Square array for error correction by 

parity checking.
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 The codeword is formed by 
arranging k message bits in 
a square array 
whose rows and columns 

are checked by 2 𝑘 parity 
bits.

 A transmission error in one 
message bit causes a row 
and column parity failure 
with the error at the 
intersection, so single 
errors can be corrected.

[Carlson & Crilly, p 594]

𝑏1 𝑏2 𝑏 𝑝1
𝑏 𝑏5 𝑏6 𝑝2
𝑏7 𝑏8 𝑏9 𝑝 
𝑝 𝑝5 𝑝6

𝐛 = 𝑏1, 𝑏2,, 𝑏9

𝐱 = 𝑏1, 𝑏2,, 𝑏9, 𝑝1, 𝑝2,, 𝑝6



Example: square array 
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 𝑘 = 9

 2 9 = 6 parity bits.

[Carlson & Crilly, p 594]

1 0 1
1 1 0
1 0 0

= 101110100

= 101110100_ _ _ _ _ _ 𝒚 = 100110100001111

𝑏1 𝑏2 𝑏 𝑝1
𝑏 𝑏5 𝑏6 𝑝2
𝑏7 𝑏8 𝑏9 𝑝 
𝑝 𝑝5 𝑝6

𝐛 = 𝑏1, 𝑏2,, 𝑏9

𝐱 = 𝑏1, 𝑏2,, 𝑏9, 𝑝1, 𝑝2,, 𝑝6



Weight and Distance
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 The weight of a vector is the number of nonzero coordinates in 
the vector.

 The weight of a vector 𝐱 is commonly written as 𝒘 𝐱 .
 Ex. 𝑤 010111 =

 For BSC with cross-over probability 𝑝 < 0.5, error pattern with 
smaller weight (less #1s) are more likely to occur.

 The Hamming distance between two n-bit blocks is the 
number of coordinates in which the two blocks differ.
 Ex. 𝑑 010111,011011 =

 Note: 
 The Hamming distance between any two vectors equals the weight of their 

sum.

 The Hamming distance between the transmitted codeword 𝐱 and the 
received vector 𝐲 is the same as the weight of the corresponding error 

pattern 𝐞.



Review: Minimum Distance (dmin)
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The minimum distance (dmin) of a block code is the 

minimum Hamming distance between all pairs of distinct 

codewords.

 Ex. Problem 5 of HW4:

 Ex. Repetition code: 



dmin: two important facts
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 For any linear block code, the minimum distance (dmin) 

can be found from minimum weight of its nonzero

codewords.

 So, instead of checking 2
𝑘

2
pairs, 

simply check the weight of the 2𝑘 codewords.

 A code with minimum distance dmin can

 detect all error patterns of weight w ≤ dmin-1.

 correct all error patterns of weight w ≤ 
𝑑min−1

2
.

the floor function



dmin is an important quantity
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പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

പ𝐜 5

പ𝐜 6

പ𝐜 7

പ𝐜 8

Recall: Codebook construction

Choose  = 2𝑘 from 2𝑛

possibilities to be used as 

codewords.  



dmin is an important quantity
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 To be able to detect all w-bit errors, we need 𝑑min ≥ 𝑤 + 1.

 With such a code there is no way that w errors can change a 

valid codeword into another valid codeword. 

 When the receiver observes an illegal codeword, it can tell that 

a transmission error has occurred. 

പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

ഫ𝒚 = ഫ𝒙⊕ പ𝒆

പ𝒆 The received vector ഫ𝒚 can be 

calculated from 

ഫ𝒚 = ഫ𝒙⊕ പ𝒆.ഫ𝒙 = പ𝐜 5



dmin is an important quantity
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 To be able to detect all w-bit errors, we need 𝑑min ≥ 𝑤 + 1.

 With such a code there is no way that w errors can change a 

valid codeword into another valid codeword. 

 When the receiver observes an illegal codeword, it can tell that 

a transmission error has occurred. 

പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

ഫ𝒙

പ𝒆

When 𝑑min > 𝑤 , there is no way 

that 𝑤 errors can change a valid 

codeword into another valid 

codeword.

When 𝑑min = 𝑤 , it is possible 

that 𝑤 errors can change a valid 

codeword into another valid 

codeword.



dmin is an important quantity
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 To be able to correct all w-bit errors, we need 𝑑min ≥ 2𝑤 + 1.

 This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other 

codeword.

dmin

2

പ𝐜  പ𝐜 1

പ𝐜 2

ഫ𝒙 = പ𝐜  

പ𝐜 5



Example
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Consider the code

 Is it a linear code?

 dmin = 

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.

C ∈ 0000000000, 0000011111, 1111100000, and 1111111111

⊕ പ𝐜 1 പ𝐜 2 പ𝐜  പ𝐜  

പ𝐜 1

പ𝐜 2

പ𝐜  

പ𝐜  

0000000000

0000011111

1111100000

1111111111


