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Review: Channel Encoder and Decoder
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System Model for Chapter 5
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. V1 R .
Ve Cto r N Otatl O n 17.2 i' 6, 0: the zero vector
o T’\: column vector 1;l- i (the all-zero vector)
i T, 1: the one vector
o | (the all-one vector
® I': row vector (T, Tap ooy Ty e T) (the al-one vector)

® Subscripts represent element indices inside individual
vectors.

V; and 77 refer to the i elements inside the vectors V and I,
respectively.

®* When we have a list of vectors, we use superscripts in

parentheses as indices of vectors.

1 2 M
TI\( ) , TI\( ) A TI\( ) is a list of M column vectors

1'(1), l‘(z), . [(M) is a list of M row vectors

i - .
TI\( )and I_‘(l) refer to the i vectors in the corresponding lists.

AN
o -




Review: Channel Decoding

e Recall
The MAP decoder is the optimal decoder.

When the codewords are equally-likely, the ML decoder the same
as the MAP decoder; hence it is also optimal.

When the crossover probability of the BSC p is < 0.5, i
ML decoder is the same as the minimum distance decoder. .

® In this chapter, we assume the use of minimum distance
decoder.

X(X) = arg m)_i(n d ()_(, X)

* Also, in this chapter, we will focus
less on probabilistic analysis,

but more on explicit codes.
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Review: Block Encoding

® We mentioned the general form of channel coding over BSC.

® In particular, we looked at the general form of block
codes.

[ Block Encoder

- A A - A

k bits k bits n bits n bits

Code 1ength
— “Dimension” of the code

(n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

Assume n > k N——> codewords \—>“messages”

k — Max. achievable rate
Rate: R = —.

n Recall that the capacity of BSCis C = 1 — H(p).

For p € (0,1), we also have C € (0,1).
Achievable rate is < 1.




System Model for Section b.1
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C

e C = the collection of all codewords for the code considered

* Each n-bit block is selected from C.
® The message (data block) has k bits,

so there are 2% possibilities.

® A reasonable code would not assign the same codeword to

different messages.
 Therefore, there are 2* (distinct) codewords in C.

* Ex. Repetition code withn = 3

(-




GF(2)

The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication
of bits:

@0 1 (0 1
0|10 1 0(0 O
111 0 110 1

These are modulo-2 addition and modulo-2 multiplication,
respectively.

The operations are the same as the exclusive-or (XOR)
operation and the AND operation.
We will simply call them addition and multiplication so that we can
use a matrix formalism to define the code.

The two-element set {0, 1} together with this definition of
addition and multiplication is a number system called a finite

field or a Galois field, and is denoted by the label GF(2).




(-

Modulo operation

® The modulo operation finds the remainder after division of

one number by another (sometimes called modulus).

* Given two positive numbers, a (the dividend) and n (the

divisor),

e a modulo n (abbreviated as @ mod n ) is the remainder of the

division of a by n.

quotient 13
e “83mod 6”=75 divisor 6% dividend
e “‘S5mod2”’=1 6
In MATLAB, mod (5,2) = 1. 23
* Congruence relation quotient 2 18
— divisor ZE dividend T
5=1 (mod 2) 5 remainder

4

1 remainder

/




GF(2) and modulo operation

® Normal addition and multiplication (for 0 and 1):

+

0 1

0 1
1 2

X
0
1

0 1
0 0
0 1

* Addition and multiplication in GF(2):

S

0 1

0
1

0 1
1 0

[ ]
0olo o
1

0 1
0 0
0 1




GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of

bits: o510 1 el0 1
0lo 1 o/lo o
111 O 1/0 1
° Notethat y@Q=x
XPl=X
X®x=0

The above property implies —X = X

* Extension: For vector and matrix, apply the operations to the elements
the same way that addition and multiplication would normally apply

@ (except that the calculations are all in GF(2)).




Examples

® Normal vector addition:

1 -1 2 1]+

[—2

® Vector addition in GF(2):

[1 0 1 1]6b[0 1 0 1]=11

(-

3 0 1]=[-1 2]

- - AN

normal vector addition first,

then apply “mod 2” to each

|
|
|
|
|
|
element: |
|
|
[1 0 1 110 1 0 1] :
|

|

|

————— — — — — — — — — — — — — — — —




Examples

® Normal matrix multiplication:

(7% (=2))+ (4 %x3)+(3x (=7)) = =14 + 12 + (—21)

7 4 31[-2 4 —23 14
2 5 6|13 —-8|=|-31 4
1 8 91Ll-7 6 —41 -6

® Matrix multiplication in GF(2):

o — — — — — — ——— o e

(1-1D)®0-0)®(1-1) = 19081

1 0 1771 1 0 1
0O 0 11|10 1|=|1 O
1 1 1111 0 0 O

Alternatively, one can also apply normal
matrix multiplication first, then apply

(1

mod 2” to each element:

sl 2l o l

~— e




BSC and the Error Pattern

® For one use of the channel,

x_@ >_>y

® Again, to transmit k information bits, the channel is used n

Encoder

)

N

)

times.
b Sf
= \
1x k
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1><_n

B

=X®e

Ao Chans Docoding
e .
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Linear Block Codes
® Definition: Cis a (binary) linear (block) code if and

only if C forms a vector (sub)space wver ).

Equivalently, this is the same as requiring that
if (1) and X&) € C, then xV@®x(? € C.

Note that any e linear code C must contain 0.

e Ex.The code that we considered in is
C = {00000,01000,10001,11111}

Is it a linear code?




Linear Block Codes: Motivation (1)
® Why linear block codes are popular?

® Recall: General block encoding

Characterized by its codebook.

o The table that lists all the 2¥ mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

o The M info-blocks are denoted by sV, s ... s,
The corresponding M codewords are denoted by xM, x?), ... x(M),
respectively.
index 7 | info-block s codeword x

Choose M = 2¥ from
2n possibilities to be
used as codewords.

1 s =000...0 | xY) =

2 s? =000...1 | x®¥ =

[See p. 51 in Ch. 3 of the lecture notes. ]

M '§<M> =111...1 g(f‘”f) -

Can be realized by combinational / combinatorial circuit.

@ If Tucky, can used K-map to simplify the circuit.
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Linear Block Codes: Motivation (2)
® Why linear block codes are popular?

® [inear block encoding is the same as matrix multiplication.

See next slide.
The matrix replaces the table for the codebook.

The size of the matrix is only k X 1 bits.
Compare this against the table (codebook) of size 2% x (k + n) bits for

general block encoding.
® Linearity = easier implementation and analysis
® Performance of the class of linear block codes is similar to

performance of the general class of block codes.

Can limit our study to the subclass of linear block codes

without sacrificing system performance.




Linear Block Codes: Generator Matrix

g(l)

. . . 2
For any linear code, there is a matrix G = g?

g(k)

called the generator matrix “exn

such that, for any codeword X, there is a message vector b

z g0
Note: J=1

(1) Any codeword can be expressed as a hnear combination of the

which produces X by

Note also that, given a matrix G, the (block)
code that is constructed by (2) is always linear.

rows of G {

(2) C = {bG:b € {0,1}*}
(-

)




Example
1 0 01 0 1)
G=0 1 0 0 1 1
0O 01 110

\ J

* Find the codeword for the message b = [1 0 0]

* Find the codeword for the message b = [0 1 1]

©




Example _ _
1110000
1001100
“=lo 010110
1010101

® Find the codeword for the message b = [1 0 0 0]

* Find the codeword for the message b = [0 1 1 0]

©




Linear Block Codes: Examples

* Repetition code: X = lb b - b] b| x
G=[1 1 - 1] L
x=bG=bG=[b b - bl
Pk _1

n n
vk
* Single-parity-check code: X = [ b ;Z b-]
j=1
G = [Ikxk;lT] par;ty bit
k k
R=—-—=— b X
n  k+1 0 0/]0 0 0
O 110 1 1
1 o1 o 1
1)1 1 o0




Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Triple—repetition code Parity—check code




Even Parity vs. Odd Parity

® Parity bit checking is used occasionally for transmitting ASCII
characters, which have 7 bits, leaving the 8th bit as a parity
bit.

® Two options:

Even Parity: Added bit ensures an even number of 1s in each
codeword.

A: 10000010
Odd Parity: Added bit ensures an odd number of 1s in each
codeword.

A: 10000011




Even Parity vs. Odd Parity

® Even parity and odd parity are properties of a codeword (a

vector), not a bit.

* Note: The generator matrix G = [Ix; 1] previously

considered produces even parity codeword

k
X = b ;ij
| J=1 |

® Q: Consider a code that uses odd parity. Is it linear?




Error Control using Parity Bit

* If an odd number of bits (including the parity bit) are
transmitted incorrectly, the parity will be incorrect, thus

indicating that a parity error occurred in the transmission.

® Ex.

Suppose we use even parity.

Consider the codeword X = 10000010 Ll

® Suitable for detecting errors; cannot correct any errors
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Error Detection &

Two types of error control:

1. error detection

error correction

N

)

Error detection: the determination of whether errors are present in a

recelved Word M =2k possibilities

usually by Checking whether

the received word is one of the

Choose M = 2K from
2" possibilities to be
used as codewords.

valid codewords.

When a two-way channel exists between source and destination, the
receiver can request retransmission of information containing
detected errors.

This error-control strategy is called automatic-repeat-request (ARQ).
An error pattern is undetectable if and only if it causes the received
word to be a valid codeword other than that which was transmitted.

Ex: In single-parity-check code, error will be undetectable when the number
of bits in error is even.

/




Error Correction

* In FEC (forward error correction) system, when the
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid

codewords was transmitted.

® Jtis possible for a detectable error pattern to cause the
decoder to select a codeword other than that which was
actually transmitted. The decoder is then said to have

committed a decoding error.




4 _ I
Square array for error correction by

parity checking.

® The codeword is formed by

h — [bl,bz, ...,bg]

arranging k message bits in by | b, | b 2 2_91_ -
a square arra
those rOws an columns by b5 b6 1—92— -
are checked by 2\Vk parity b7 b8 b9 1_93_ )
bits. | P4 | Ps | Pe |
® A transmission error in one
message bit causes a row X= [bl' by, ...,Dg, D1, D2, -, p6]

and column parity failure
with the error at the
intersection, so single
errors can be corrected.

[Carlson & Crilly, p 594] /




o k=9
© 2\/6 =6 parity bits.

h - [bl' bZi ce) b9]

= 101110100
X = |by, by, ..., bo, 01,02, .-, De]
=101110100__
1 ]0 |1 o
11110 o
1 10 1|0

Example: square array

bi | by | b3 | Py )
by | bs | bg | P2
by | bg | by | p3 _
' P41 Ps | Pe6 1

y =100110100001111

| |
[Carlson & Crilly, p 594] /




Weight and Distance

® The Weight of a vector is the number of nonzero coordinates in
the vector.

The Weight of a vector X is commonly written as W(X)
Ex. w(010111) =

For BSC with cross-over probability p < 0.5, error pattern with
smaller weight (less #1s) are more likely to occur.

® The Hamming distance between two n-bit blocks is the
number of coordinates in which the two blocks differ.

Ex.d(010111,011011) =

Note:

The Hamming distance between any two vectors equals the Weight of their
sum.

The Hamming distance between the transmitted codeword X and the
received vector Y is the same as the weight of the corresponding error

pattern g .




Review: Minimum Distance (d

The minimum distance (d

min)

min)
of a block code is the

minimum Hamming distance between all pairs of distinct

codewords.

e Ex. Problem 5 of HW4:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The

four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over
the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d,,;, among the codewords?

= Anin = 1
00000 o1 ooyéom 1111
o000 0 Clj R S
04900 3 4
L 1000 1 3
11111

e Ex. Repetition code:
(- i
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- two important facts

For any lincar block code, the minimum distance (d
can be found from minimum Weight of its nonzero
codewords.

So, instead of checking (2k) pairs,

sumply check the Welght of the 2¥ codewords.

min)

.

(o A code with minimum distance d_. can

detect all error patterns of Weight w<d . -1.

min

d 1
correct all error patterns of Welght w < {&‘
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System Model for Section 5.1

IS an important quantity

min

- "
| Two types of error control: )
1. error detection

Recall: Codebook construction

\ 2. error correction )

Teamaite Error Detection
s I
Message CEEE s Ch k n * Error detection: the determination of whether errors are present in a
: nbits oose = from received word uart =
kb § < P

. Add x: channel input usually by checking whether i —_—
systemat the received word s cae of the ([ 243 [en o) Frinat
R4 o W O 3 e

Thili4+3 valid codewords. NA-==1
possibilities to be used as coderts TS
* When a two-way channel exists between source and destination, the

receiver can request retransmission of information containing
codewords. ey

This error-control strategy is called automatic-repeat-request (ARQ).

y: channel output

O * An crror pattern is undetectable if and only if it causes the received
=_—— word to be a valid codeword other than that which was transmitted.
nbis Ex: In single-parity-check code, error will be undetectable when the number

o e of bits in error is even.
& A\




d. .. IS an important quantity

® To be able to detect all w-bit errors, we need dpi, = w + 1.

With such a code there is no way that w errors can change a

valid codeword into another valid codeword.

When the receiver observes an illegal codeword, it can tell that

a transmission error has occurred.
o O
~0 © T 4 O
v C The received vector V can be

O @ 8 IO calculated from




d_. IS an important quantity

® To be able to detect all w-bit errors, we need dpi, = w + 1.

min

With such a code there is no way that w errors can Change a

valid codeword into another valid codeword.

When the receiver observes an illegal codeword, it can tell that

a transmission error has occurred.

When dpijy > W, there is no way

that W errors can change a valid

° c@ codeword into another valid
o
codeword.
When d i, = W, itis possible
that W errors can change a valid
.C(Z) codeword into another valid

codeword.




d. .. IS an important quantity

® To be able to correct all w-bit errors, we need d,j, = 2w + 1.

This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other

codeword.

/’_\\ -~

/7 1 \ // N

/ E \ / (4) \ /’_\\
"e 1| Cg e®
\ / h L==x~ [ _. I
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Example

Consider the code
C e {OOOOOOOOOO, 0000011111, 1111100000, and 111111111 1}

® [sit a linear code? 4 D | cO|c@]c® C(4)\
0000000000 ¢V

0000011111 €@

1111100000 ¢

min 1111111111 ¢®
\ - /

[t can detect (at most) errors.

[t can correct (at most) errors.




