Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5. Channel Coding

Office Hours:
Check Google Calendar on the course website.
Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

Review: Channel Encoder and Decoder

System Model for Chapter 5

Vector Notation

- $\overrightarrow{\mathbf{V}}$: column vector
- $\underline{\mathbf{r}}$: row vector
- Subscripts represent element indices inside individual vectors.
- v_{i} and r_{i} refer to the $i^{\text {th }}$ elements inside the vectors $\overrightarrow{\mathbf{v}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
- $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}, \ldots, \overrightarrow{\mathbf{v}}^{(M)}$ is a list of M column vectors
- $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \ldots, \underline{\mathbf{r}}^{(M)}$ is a list of M row vectors
- $\overrightarrow{\mathbf{v}}^{(i)}$ and $\underline{\mathbf{r}}^{(i)}$ refer to the $i^{\text {th }}$ vectors in the corresponding lists.

Review: Channel Decoding

- Recall

1. The MAP decoder is the optimal decoder.
2. When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also optimal.
3. When the crossover probability of the $\mathrm{BSC} p$ is <0.5, ML decoder is the same as the minimum distance decoder.

- In this chapter, we assume the use of minimum distance decoder.
- $\underline{\hat{\mathbf{x}}}(\underline{\mathbf{y}})=\arg \min _{\underline{\mathbf{x}}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
- less on probabilistic analysis,
- but more on explicit codes.

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Office Hours:
Check Google Calendar on the course website.
Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

- (n, k) codes: $\underline{n-b i t ~ b l o c k s ~ a r e ~ u s e d ~ t o ~ c o n v e y s ~} \underline{k}$-info-bit blocks
- Assume $n>k$ \rightarrow codewords
- Rate: $R=\frac{k}{n}$.

Recall that the capacity of BSC is $C=1-H(p)$.
For $p \in(0,1)$, we also have $C \in(0,1)$.
Achievable rate is <1.

System Model for Section 5.1

- $\mathcal{C}=$ the collection of all codewords for the code considered
- Each n-bit block is selected from \mathcal{C}.
- The message (data block) has k bits, so there are 2^{k} possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^{k} (distinct) codewords in \mathcal{C}.
- Ex. Repetition code with $n=3$

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

-	0	1
0	0	0
1	0	1

- These are modulo-2 addition and modulo-2 multiplication, respectively.
- The operations are the same as the exclusive-or (XOR) operation and the AND operation.
- We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set $\{0,1\}$ together with this definition of addition and multiplication is a number system called a finite field or a Galois field, and is denoted by the label GF(2).

Modulo operation

- The modulo operation finds the remainder after division of one number by another (sometimes called modulus).
- Given two positive numbers, a (the dividend) and n (the divisor),
- a modulo \boldsymbol{n} (abbreviated as $\boldsymbol{a} \bmod \boldsymbol{n}$) is the remainder of the division of a by n.
- "83 mod 6" = 5
-" $5 \bmod 2 "=1$
- In MATLAB, $\bmod (5,2)=1$.
- Congruence relation
- $5 \equiv 1(\bmod 2)$

GF(2) and modulo operation

- Normal addition and multiplication (for 0 and 1):

+	0	1				
0	0	1	\quad	\times	0	1
:---	:---	:---	:---			
1	1	2	\quad	1	0	1
:---	:---	:---	:---			

- Addition and multiplication in GF(2):

$$
\begin{array}{c|lll|ll}
\oplus & 0 & 1 \\
\hline 0 & 0 & 1 & & \bullet & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 & & 1 & 0
\end{array}
$$

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

\bullet	0	1
0	0	0
1	0	1

- Note that

$$
\begin{array}{r}
x \oplus 0=x \\
x \oplus 1=\bar{x} \\
x \oplus x=0
\end{array}
$$

The above property implies $-\boldsymbol{x}=\boldsymbol{x}$ By definition, "- x " is something that, when added with x, gives 0 .

- Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in GF(2)).

Examples

- Normal vector addition:

- Vector addition in GF(2):

Alternatively, one can also apply normal vector addition first, then apply "mod 2" to each element:

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right] \oplus\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right]
$$

$=\left[\begin{array}{llll}1 & 1 & 1 & 2\end{array}\right] \xrightarrow{\bmod 2}\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$

Examples

- Normal matrix multiplication:

$$
\begin{gathered}
(7 \times(-2))+(4 \times 3)+(3 \times(-7))=-14+12+(-21) \\
{\left[\begin{array}{lll}
7 & 4 & 3 \\
2 & 5 & 6 \\
1 & 8 & 9
\end{array}\right]\left[\begin{array}{cc}
-2 & 4 \\
3 & -8 \\
-7 & 6
\end{array}\right]=\left[\begin{array}{cc}
-23 & 14 \\
-31 & 4 \\
-41 & -6
\end{array}\right]}
\end{gathered}
$$

- Matrix multiplication in GF(2):
$(1 \cdot 1) \oplus(0 \cdot 0) \oplus(1 \cdot 1)=1 \oplus 0 \oplus 1$

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

Alternatively, one can also apply normal matrix multiplication first, then apply $" \bmod 2 "$ to each element:

BSC and the Error Pattern

- For one use of the channel,

- Again, to transmit k information bits, the channel is used n times.

Linear Block Codes

- Definition: \mathcal{C} is a (binary) linear (block) code if and only if \mathcal{C} forms a vector (sub) space ${ }_{\text {(over } G(2)}(2)$.
- Equivalently, this is the same as requiring that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}
$$

- Note that any (nonempry) linear code \mathcal{C} must contain $\underline{\mathbf{0}}$.
- Ex. The code that we considered in Problem 5 of HW3 is

$$
\mathcal{C}=\{00000,01000,10001,11111\}
$$

Is it a linear code?

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block encoding
- Characterized by its codebook.
[See p. 51 in Ch. 3 of the lecture notes.]
- The table that lists all the 2^{k} mapping from the k-bit info-block $\underline{\mathbf{s}}$ to the n-bit codeword $\underline{\mathbf{x}}$ is called the codebook.
- The M info-blocks are denoted by $\underline{\mathbf{s}}^{(1)}, \underline{\mathbf{s}}^{(2)}, \ldots, \underline{\mathbf{s}}^{(M)}$.

The corresponding M codewords are denoted by $\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{x}}^{(2)}, \ldots, \underline{\mathbf{x}}^{(M)}$, respectively.

index i	info-block $\underline{\mathbf{s}}$	codeword $\underline{\mathbf{x}}$
1	$\underline{\mathbf{s}}^{(1)}=000 \ldots 0$	$\underline{\mathbf{x}}^{(1)}=$
2	$\underline{\mathbf{s}}^{(2)}=000 \ldots 1$	$\underline{\mathbf{x}}^{(2)}=$
\vdots	\vdots	\vdots
M	$\underline{\mathbf{s}}^{(M)}=111 \ldots 1$	$\underline{\mathbf{x}}^{(M)}=$

- Can be realized by combinational/combinatorial circuit.
- If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the same as matrix multiplication.
- See next slide.
- The matrix replaces the table for the codebook.
- The size of the matrix is only $k \times n$ bits.
- Compare this against the table (codebook) of size $2^{k} \times(k+n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
- Can limit our study to the subclass of linear block codes without sacrificing system performance.

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix $\mathbf{G}=$
called the generator matrix
 such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{X}}$ by

Note:

$$
\underline{\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)} \bmod ^{(j) \text { summation }}
$$

(1) Any codeword can be expressed as a linear combination of the rows of \mathbf{G}

Note also that, given a matrix \mathbf{G}, the (block) code that is constructed by (2) is always linear.

Example

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$

Example

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array} 0\right.$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array} 0\right]$

Linear Block Codes: Examples

- Repetition code: $\underline{\mathbf{x}}=\left[\begin{array}{llll}b & b & \cdots & b\end{array}\right]$
- $\mathbf{G}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$
- $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=b \mathbf{G}=\left[\begin{array}{llll}b & b & \cdots & b\end{array}\right]$
- $R=\frac{k}{n}=\frac{1}{n}$

- $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]$
- $R=\frac{k}{n}=\frac{k}{k+1}$

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Triple-repetition code
Parity-check code

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit.
- Two options:
- Even Parity: Added bit ensures an even number of 1 s in each codeword.
- A: 10000010
- Odd Parity: Added bit ensures an odd number of 1 s in each codeword.
- A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note: The generator matrix $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]$ previously considered produces even parity codeword

$$
\underline{\mathbf{x}}=\left[\begin{array}{|}
\underline{\mathbf{b}} & \left.\sum_{j=1}^{k} b_{j}\right]
\end{array}\right.
$$

- Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

- If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity will be incorrect, thus indicating that a parity error occurred in the transmission.
- Ex.
- Suppose we use even parity.
- Consider the codeword $\underline{\mathbf{x}}=10000010$
- Suitable for detecting errors; cannot correct any errors

The ASCII Coded Character Set

Error Detection

Two types of error control:
 1. error detection

2. error correction

- Error detection: the determination of whether errors are present in a received word
- usually by checking whether the received word is one of the valid codewords.

Choose $M=2^{k}$ from
2^{n} possibilities to be
used as codewords.

- When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors.
- This error-control strategy is called automatic-repeat-request (ARQ).
- An error pattern is undetectable if and only if it causes the received word to be a valid codeword other than that which was transmitted.
- Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a decoding error.

Square array for error correction by parity checking.

- The codeword is formed by arranging k message bits in a square array whose rows and columns are checked by $2 \sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row

b_{1}	b_{2}	b_{3}	p_{1}
b_{4}	b_{5}	b_{6}	p_{2}
b_{7}	b_{8}	b_{9}	p_{3}
p_{4}	p_{5}	p_{6}	

$$
\underline{\mathbf{x}}=\left[b_{1}, b_{2}, \ldots, b_{9}, p_{1}, p_{2}, \ldots, p_{6}\right]
$$

and column parity failure with the error at the intersection, so single errors can be corrected.

Example: square array

- $k=9$
- $2 \sqrt{9}=6$ parity bits.

$$
\begin{aligned}
\underline{\mathbf{b}} & =\left[b_{1}, b_{2}, \ldots, b_{9}\right] \\
& =101110100 \\
\underline{\mathbf{x}} & =\left[b_{1}, b_{2}, \ldots, b_{9}, p_{1}, p_{2}, \ldots, p_{6}\right]
\end{aligned}
$$

b_{1}	b_{2}	b_{3}	p_{1}
b_{4}	b_{5}	b_{6}	p_{2}
b_{7}	b_{8}	b_{9}	p_{3}
p_{4}	p_{5}	p_{6}	

$$
=101110100
$$

1	0	1	---
1	1	0	---
1	0	0	--

$\underline{y}=100110100001111$

Weight and Distance

- The weight of a vector is the number of nonzero coordinates in the vector.
- The weight of a vector $\underline{\mathbf{x}}$ is commonly written as $\boldsymbol{w}(\underline{\mathbf{x}})$.
- Ex. $w(010111)=$
- For BSC with cross-over probability $p<0.5$, error pattern with smaller weight (less \#1s) are more likely to occur.
- The Hamming distance between two n-bit blocks is the number of coordinates in which the two blocks differ.
- Ex. $d(010111,011011)=$
- Note:
- The Hamming distance between any two vectors equals the weight of their sum.
- The Hamming distance between the transmitted codeword $\underline{\mathbf{x}}$ and the received vector $\underline{\mathbf{y}}$ is the same as the weight of the corresponding error pattern \mathbf{e}.

Review: Minimum Distance ($d_{\text {min }}$)

The minimum distance ($d_{\text {min }}$) of a block code is the minimum Hamming distance between all pairs of distinct codewords.

- Ex. Problem 5 of HW4:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are $00000,01000,10001$, and 11111. A codeword is transmitted over the BSC with crossover probability $p=0.1$.
(a) What is the minimum (Hamming) distance $d_{\min }$ among the codewords?

	00000	e 01000	$\begin{aligned} & d_{m i} \\ & 10001 \end{aligned}$	$\begin{aligned} & =1 \\ & 11111 \end{aligned}$
00000		(1)	2	5
01000			3	4
2e 10001				3
11111				

- Ex. Repetition code:

$d_{\text {min }}$: two important facts

- For any linear block code, the minimum distance $\left(d_{\text {min }}\right)$ can be found from minimum weight of its nonzero codewords.
- So, instead of checking $\binom{2^{k}}{2}$ pairs, simply check the weight of the 2^{k} codewords.
- A code with minimum distance $d_{\text {min }}$ can
- detect all error patterns of weight $\mathrm{w} \leq d_{\min }-1$.
- correct all error patterns of weight $\mathrm{w} \leq\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$.
the floor function

$d_{\text {min }}$ is an important quantity

$d_{\text {min }}$ is an important quantity

- To be able to detect all w-bit errors, we need $d_{\text {min }} \geq w+1$.
- With such a code there is no way that w errors can change a valid codeword into another valid codeword.
- When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

$d_{\text {min }}$ is an important quantity

- To be able to detect all w-bit errors, we need $d_{\text {min }} \geq w+1$.
- With such a code there is no way that w errors can change a valid codeword into another valid codeword.
- When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

When $d_{\text {min }}>w$, there is no way that w errors can change a valid codeword into another valid codeword.

When $d_{\text {min }}=w$, it is possible that w errors can change a valid codeword into another valid codeword.

$d_{\text {min }}$ is an important quantity

- To be able to correct all w-bit errors, we need $d_{\min } \geq 2 w+1$.
- This way, the legal codewords are so far apart that even with w changes, the original codeword is still closer than any other codeword.

Example

Consider the code
$\mathcal{C} \in\{0000000000,0000011111,1111100000$, and 1111111111$\}$

- Is it a linear code?
- $d_{\text {min }}=$

0000000000	$\underline{\mathbf{c}}^{(1)}$	$\underline{\mathbf{c}}^{(2)}$	$\underline{\mathbf{c}}^{(3)}$	$\underline{\mathbf{c}}^{(4)}$
$0000011111{\underline{\mathbf{c}^{(2)}}}^{(1)}$				
$1111100000{\underline{\mathbf{c}^{(3)}}}$				
$1111111111 \underline{\mathbf{c}}^{(4)}$				

- It can detect (at most) \qquad errors.

- It can correct (at most) \qquad errors.

