Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Channel Coding

Office Hours:

Check Google Calendar on the course website. Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

System Model for Chapter 5

- Subscripts represent element indices inside individual vectors.
 - v_i and r_i refer to the i^{th} elements inside the vectors $\vec{\mathbf{v}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
 - $\vec{\mathbf{v}}^{(1)}$, $\vec{\mathbf{v}}^{(2)}$, ..., $\vec{\mathbf{v}}^{(M)}$ is a list of *M* column vectors
 - $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \dots, \underline{\mathbf{r}}^{(M)}$ is a list of *M* row vectors
 - $\mathbf{\overline{v}}^{(i)}$ and $\mathbf{\underline{r}}^{(i)}$ refer to the *i*th vectors in the corresponding lists.

Review: Channel Decoding

- Recall
 - 1. The **MAP decoder** is the optimal decoder.
 - 2. When the codewords are equally-likely, the **ML decoder** the same as the MAP decoder; hence it is also **optimal**.
 - When the crossover probability of the BSC *p* is < 0.5, ML decoder is the same as the minimum distance decoder.

- In this chapter, we assume the use of **minimum distance decoder**.
 - $\hat{\mathbf{x}}(\underline{\mathbf{y}}) = \arg\min_{\mathbf{x}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
 - less on probabilistic analysis,
 - but more on explicit codes.

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Office Hours:

Check Google Calendar on the course website. Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

System Model for Section 5.1

С

- C = the collection of all codewords for the code considered
- Each *n*-bit block is selected from C.
- The message (data block) has *k* bits, so there are 2^{*k*} possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^k (distinct) codewords in \mathcal{C} .
- Ex. Repetition code with n = 3

GF(2)

• The construction of the codes can be expressed in matrix form using the following definition of **addition** and **multiplication** of bits:

\oplus	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

- These are **modulo-2** addition and **modulo-2** multiplication, respectively.
- The operations are the same as the **exclusive-or** (**XOR**) operation and the **AND** operation.
 - We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set {0, 1} together with this definition of addition and multiplication is a number system called a **finite field** or a **Galois field**, and is denoted by the label **GF(2)**.

Modulo operation

- The **modulo operation** finds the **remainder** after division of one number by another (sometimes called **modulus**).
- Given two positive numbers, *a* (the dividend) and *n* (the divisor),
- *a* modulo *n* (abbreviated as *a* mod *n*) is the remainder of the division of *a* by *n*.
- "83 mod 6" = 5
- "5 mod 2" = 1
 - In MATLAB, mod (5, 2) = 1.
- Congruence relation
 - $5 \equiv 1 \pmod{2}$

GF(2) and modulo operation

• Normal addition and multiplication (for 0 and 1):

+	0	1	×	0	1
0	0	1	0	0	0
1	1	2	1	0	1

• Addition and multiplication in GF(2):

\oplus	0	1	•	0	1
0	0	1	$\overline{0}$	0	0
1	1	0	1	0	1

GF(2)

 The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

• Note that $x \oplus 0 = x$

$$x \oplus 1 = \overline{x}$$

$$x \oplus x = 0$$

The above property implies -x = xBy definit

By definition, "-x" is something that, when added with x, gives 0.

• Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in GF(2)).

Examples

• Normal vector addition:

• Vector addition in GF(2):

Alternatively, one can also apply normal vector addition first, then apply "mod 2" to each element:

 $[1 \quad 0 \quad 1 \quad 1] \bigoplus [0 \quad 1 \quad 0 \quad 1]$ $= [1 \quad 1 \quad 1 \quad 2] \xrightarrow{\text{mod } 2} [1 \quad 1 \quad 1 \quad 0]$

Examples

• Normal matrix multiplication:

 $(7 \times (-2)) + (4 \times 3) + (3 \times (-7)) = -14 + 12 + (-21)$ $\begin{bmatrix} 7 & 4 & 3 \\ 2 & 5 & 6 \\ 1 & 8 & 9 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 3 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -23 & 14 \\ -31 & 4 \\ -41 & -6 \end{bmatrix}$

• Matrix multiplication in GF(2):

 $(1 \cdot 1) \oplus (0 \cdot 0) \oplus (1 \cdot 1) = 1 \oplus 0 \oplus 1$ Alternatively, one can also apply normal matrix multiplication first, then apply "mod 2" to each element: $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 2 & 2 \end{bmatrix} \xrightarrow{\text{mod } 2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

BSC and the Error Pattern

• For one use of the channel,

• Again, to transmit *k* information bits, the channel is used *n* times.

Linear Block Codes

Definition: C is a (binary) linear (block) code if and only if C forms a vector (sub)space (over GF(2)). In case you forgot about the concept of vector space,...
Equivalently, this is the same as requiring that if x⁽¹⁾ and x⁽²⁾ ∈ C, then x⁽¹⁾⊕x⁽²⁾ ∈ C.

• Note that any (non-empty) linear code C must contain $\underline{0}$.

Ex. The code that we considered in **Problem 5 of HW3** is
 C = {00000,01000,10001,11111}

Is it a linear code?

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block encoding
 - Characterized by its codebook.
 - The table that lists all the 2^k mapping from the k-bit info-block **s** to the *n*-bit codeword $\underline{\mathbf{x}}$ is called the **codebook**.
 - [See p. 51 in Ch. 3 of the lecture notes. • The *M* info-blocks are denoted by $\underline{\mathbf{s}}^{(1)}, \underline{\mathbf{s}}^{(2)}, \dots, \underline{\mathbf{s}}^{(M)}$. The corresponding M codewords are denoted by $\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{x}}^{(2)}, \dots, \underline{\mathbf{x}}^{(M)}$, respectively.

index i	info-block $\underline{\mathbf{s}}$	codeword $\underline{\mathbf{x}}$
1	$\underline{\mathbf{s}}^{(1)} = 000\dots 0$	$\underline{\mathbf{x}}^{(1)} =$
2	$\underline{\mathbf{s}}^{(2)} = 000 \dots 1$	$\underline{\mathbf{x}}^{(2)} =$
:	•	•
M	$\underline{\mathbf{s}}^{(M)} = 111\dots 1$	$\mathbf{\underline{x}}^{(M)} =$

Choose $M = 2^k$ from 2^n possibilities to be used as codewords

- Can be realized by combinational/combinatorial circuit.
 - If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the <u>same as matrix multiplication</u>.
 - See next slide.
 - The matrix replaces the table for the codebook.
 - The size of the matrix is only $k \times n$ bits.
 - Compare this against the table (codebook) of size $2^k \times (k + n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
 - Can limit our study to the subclass of linear block codes without sacrificing system performance.

Linear Block Codes: Generator Matrix

34

Example

 $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$

• Find the codeword for the message $\underline{\mathbf{b}} = [1 \ 0 \ 0]$

• Find the codeword for the message $\underline{\mathbf{b}} = [0 \ 1 \ 1]$

Example

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

• Find the codeword for the message $\underline{\mathbf{b}} = [1 \ 0 \ 0 \ 0]$

• Find the codeword for the message $\underline{\mathbf{b}} = [0 \ 1 \ 1 \ 0]$

Linear Block Codes: Examples

- **Repetition code**: $\underline{\mathbf{x}} = \begin{bmatrix} b & b & \cdots & b \end{bmatrix}$
 - $\mathbf{G} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$
 - $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = b\mathbf{G} = \begin{bmatrix} b & b & \cdots & b \end{bmatrix}$ • $R = \frac{k}{-1} = \frac{1}{-1}$

• Single-parity-check code: <u>x</u> =

•
$$\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$$

• $R = \frac{k}{n} = \frac{k}{k+1}$

 \boldsymbol{n}

$$\underline{\mathbf{b}}; \sum_{j=1}^{\kappa} b_j$$
parity bit
$$\frac{\mathbf{b} \quad \underline{\mathbf{x}}}{0 \quad 0 \quad 0 \quad 0 \quad 0}$$

$$0 \quad 1 \quad 0 \quad 1 \quad 1$$

$$1 \quad 0 \quad 1 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1 \quad 1 \quad 0$$

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Related Idea:

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit.
- Two options:
 - Even Parity: Added bit ensures an <u>even</u> number of 1s in each codeword.
 - A: 10000010
 - Odd Parity: Added bit ensures an <u>odd</u> number of 1s in each codeword.
 - A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note: The generator matrix $\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$ previously considered produces even parity codeword

$$\underline{\mathbf{x}} = \left[\underbrace{\underline{\mathbf{b}}}_{j=1}; \sum_{j=1}^{k} b_j \right]$$

• Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

• If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity will be incorrect, thus indicating that a parity error occurred in the transmission.

• Ex.

- Suppose we use even parity.
- Consider the codeword $\underline{\mathbf{x}} = 10000010$

• Suitable for *detecting* errors; *cannot correct* any errors

		US			ик 🕻										
(Amer	ican Sta Bit	he ndard C	Code for	\S Informa	CII ation Interch	CO ange) 6 5	ded	Cha		cte	r S	Set	1 1	1 1	
	NU	mpe	er		Hex	4 1st	0	1	2	3	4	5	6	7	
	3	2	1	0	2nd										
	0	0	0	0	0	(⁰ NUL	¹⁶ DLE	³² SP	⁴⁸ 0	⁶⁴ @	⁸⁰ P ⁹	6 • 1	12 ₀	$\left \right\rangle$
	0	0	0	1	1		SOH	DC1	!	1	Α	Q	а	ģ	
	0	0	1	0	2		STX	DC2	"	2	В	R	b	r	
	0	0	1	1	3		ETX	DC3	#	3	С	S	С	S	
	0	1	0	0	4		EOT	DC4	\$	4	D	Т	d	t	
	0	1	0	1	5		ENQ	NAK	%	5	Е	U	е	u	
	0	1	1	0	6		ACK	SYN	&	6	F	V	f	V	
	0	1	1	1	7		BEL	ETB	'	7	G	W	g	W	
	1	0	0	0	8		BS	CAN	(8	Н	Х	h	Х	
	1	0	0	1	9		HT	EM)	9		Y	i	У	
	1	0	1	0	А		LF	SUB	*	:	J	Ζ	j	Ζ	
	1	0	1	1	В		VT	ESC	+	;	K	[k	{	
	1	1	0	0	C		FF	FS	,	<	L	\			
	1	1	0	1	D		CR	GS	-	=	M]	m	}	
	1	1	1	0	E		SO	RS	•	>	Ν	^	n	~	
	1	1	1	1	F	(SI	US	/	?	0		0	DE	レノ

Error Detection

Two types of **error control**:

- 1. error detection
- 2. error correction
- **Error detection**: the determination of whether errors are present in a received word $M = 2^k \text{ possibilities}$
 - usually by checking whether the received word is one of the valid codewords.

Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

- When a two-way channel exists between source and destination, the receiver can request **retransmission** of information containing detected errors.
 - This error-control strategy is called **automatic-repeat-request (ARQ)**.
- An error pattern is **undetectable** if and only if it causes the received word to be a valid codeword other than that which was transmitted.
 - Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a **decoding error**.

Square array for error correction by parity checking. $h = \begin{bmatrix} h & h \end{bmatrix}$

- The codeword is formed by arranging *k* message bits in a square array whose rows *and* columns are checked by $2\sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

$$\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$$

$$\begin{array}{|c|c|c|c|c|c|c|} b_1 & b_2 & b_3 & p_1 \\ b_4 & b_5 & b_6 & p_2 \\ b_7 & b_8 & b_9 & p_3 \\ p_4 & p_5 & p_6 \end{array}$$

$$\underline{\mathbf{x}} = [b_1, b_2, \dots, b_9, p_1, p_2, \dots, p_6]$$

[Carlson & Crilly, p 594]

Example: square array

- *k* = 9
- $2\sqrt{9} = 6$ parity bits.
- $\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$
 - = 101110100
- $\underline{\mathbf{x}} = [b_1, b_2, ..., b_9, p_1, p_2, ..., p_6]$
 - = 101110100____

Weight and Distance

- The **weight** of a vector is the number of nonzero coordinates in the vector.
 - The weight of a vector $\underline{\mathbf{x}}$ is commonly written as $w(\underline{\mathbf{x}})$.
 - Ex. w(010111) =
 - For BSC with cross-over probability p < 0.5, error pattern with smaller weight (less #1s) are more likely to occur.
- The **Hamming distance** between two *n*-bit blocks is the number of coordinates in which the two blocks differ.
 - Ex. *d*(010111,011011) =
 - Note:
 - The Hamming distance between any two vectors equals the weight of their sum.
 - The Hamming distance between the transmitted codeword $\underline{\mathbf{x}}$ and the received vector $\underline{\mathbf{y}}$ is the same as the weight of the corresponding error pattern $\underline{\mathbf{e}}$.

Review: Minimum Distance (d_{min})

The **minimum distance** (d_{\min}) of a block code is the minimum Hamming distance between all pairs of distinct codewords.

• Ex. Problem 5 of HW4:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d_{min} among the codewords?

• Ex. Repetition code:

d_{\min} : two important facts

- For any linear block code, the minimum distance (d_{min}) can be found from minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.
- A code with minimum distance d_{\min} can
 - detect all error patterns of weight $w \leq d_{\min}$ -1.
 - correct all error patterns of weight $w \leq \left| \frac{d_{\min} 1}{2} \right|$.

the floor function

Recall: Codebook construction Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

E	Two types of error control 1. error detection 2. error correction
•	Error detection: the determination of whether errors are present in a received word usually by checking whether the received word is one of the valid codewords.
•	When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors.
	• This error-control strategy is called automatic-repeat-request (ARQ).
•	An error pattern is undetectable if and only if it causes the received word to be a valid codeword other than that which was transmitted.
	 Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

- To be able to detect *all w*-bit errors, we need $d_{\min} \ge w + 1$.
 - With such a code there is no way that *w* errors can change a valid codeword into another valid codeword.
 - When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

- To be able to detect *all w*-bit errors, we need $d_{\min} \ge w + 1$.
 - With such a code there is no way that *w* errors can change a valid codeword into another valid codeword.
 - When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

When $d_{\min} > w$, there is no way that w errors can change a valid codeword into another valid codeword.

When $d_{\min} = w$, it is possible that w errors can change a valid codeword into another valid codeword.

- To be able to correct *all w*-bit errors, we need $d_{\min} \ge 2w + 1$.
 - This way, the legal codewords are so far apart that even with *w* changes, the original codeword is still *closer* than any other codeword.

