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Review: Channel Encoder and Decoder

2

N
o

is
e 

&
 In

te
rf

er
en

ce

Information 
Source

Destination

Channel

Received

Signal

Transmitted

Signal

Message

Recovered Message

Source 
Encoder

Channel 
Encoder

Digital
Modulator

Source 
Decoder

Channel 
Decoder

Digital
Demodulator

Transmitter

Receiver

Add 

systematic 

redundancy

X: channel input

Y: channel output

0

1

0

1

p

1-p

p

1-p

S

𝐒



System Model for Chapter 5
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Vector Notation

4


֊𝐯 : column vector

 പ𝐫: row vector

 Subscripts represent element indices inside individual 
vectors.

 𝑣𝑖 and 𝑟𝑖 refer to the ith elements inside the vectors ֊𝐯 and പ𝐫, 
respectively.

 When we have a list of vectors, we use superscripts in 
parentheses as indices of vectors. 


֊𝐯

1
, ֊𝐯

2
, … ,֊𝐯

𝑀
is a list of M column vectors

 പ𝐫 1 , പ𝐫 2 , … , പ𝐫 𝑀 is a list of M row vectors


֊𝐯

𝑖
and പ𝐫 𝑖 refer to the ith vectors in the corresponding lists.

𝑣1
𝑣2
⋮
𝑣𝑖
⋮
𝑣𝑛

𝑟1, 𝑟2, … , 𝑟𝑖 , … 𝑟𝑛

0, 0: the zero vector

(the all-zero vector)

1, 1: the one vector

(the all-one vector)



Review: Channel Decoding
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 Recall

1. The MAP decoder is the optimal decoder. 

2. When the codewords are equally-likely, the ML decoder the same 
as the MAP decoder; hence it is also optimal.

3. When the crossover probability of the BSC p is < 0.5, 
ML decoder is the same as the minimum distance decoder. 

 In this chapter, we assume the use of minimum distance 
decoder.

 പො𝐱 പ𝐲 = arg min
പ𝐱
𝑑 പ𝐱, പ𝐲

 Also, in this chapter, we will focus 

 less on probabilistic analysis,

 but more on explicit codes.



Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

7

Digital Communication Systems
ECS 452

Office Hours: 
Check Google Calendar on the 

course website.

Dr.Prapun’s Office:

6th floor of Sirindhralai building, 

BKD

mailto:prapun@siit.tu.ac.th


Review: Block Encoding
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 We mentioned the general form of channel coding over BSC.

 In particular, we looked at the general form of block 

codes.

 (n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

 Assume n > k

 Rate: 𝑅 =
𝑘

𝑛
.

Block Encoder

k bits k bits k bits n bits n bits n bits

Recall that the capacity of BSC is 𝐶 = 1 − 𝐻 𝑝 .

For  𝑝 ∈ 0,1 , we also have  𝐶 ∈ 0,1 . 

Achievable rate is < 1.

Max. achievable rate

Code length

“Dimension” of the code

codewords “messages”



System Model for Section 5.1
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C
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 C = the collection of all codewords for the code considered

 Each n-bit block is selected from C.

 The message (data block) has k bits, 

so there are 2k possibilities.

 A reasonable code would not assign the same codeword to 

different messages.

 Therefore, there are 2k (distinct) codewords in C.

 Ex. Repetition code with n = 3



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication
of bits:

 These are  modulo-2 addition and modulo-2 multiplication, 
respectively. 

 The operations are the same as the exclusive-or (XOR) 
operation and the AND operation.
 We will simply call them addition and multiplication so that we can 

use a matrix formalism to define the code.

 The two-element set {0, 1} together with this definition of 
addition and multiplication is a number system called a finite 
field or a Galois field, and is denoted by the label GF(2).

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1





Modulo operation
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 The modulo operation finds the remainder after division of 

one number by another (sometimes called modulus).

 Given two positive numbers, 𝑎 (the dividend) and 𝑛 (the 

divisor), 

 𝒂𝐦𝐨𝐝𝐮𝐥𝐨 𝒏 (abbreviated as 𝒂𝐦𝐨𝐝 𝒏 ) is the remainder of the 

division of 𝑎 by 𝑛. 

 “83 mod 6” = 5

 “5 mod 2” = 1

 In MATLAB, mod(5,2) = 1.

 Congruence relation

 5 ≡ 1 (mod 2)

6

23

836

18

5

13
divisor

quotient

dividend

remainder
2 5

4

1

2
divisor

quotient

dividend

remainder



GF(2) and modulo operation
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 Normal addition and multiplication (for 0 and 1):

 Addition and multiplication in GF(2):

0 1 0 1

0 0 1 0 0 0

1 1 2 1 0 1

+ 

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1

 •



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

 Note that 0

1

0

x x

x x

x x

x x

 =

 =

 =

− =The above property implies

By definition, “-x” is something that, when added with x, gives 0.

 Extension: For vector and matrix, apply the operations to the elements 
the same way that addition and multiplication would normally apply 
(except that the calculations are all in GF(2)).

0 1 0 1

0 0 1 0 0 0

1 1 0 1 0 1

 •



Examples
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 Normal vector addition:

 Vector addition in GF(2):

1 −1 2 1 + −2 3 0 1 = −1 2 2 2

1 0 1 1 ⊕ 0 1 0 1 = 1 1 1 0

Alternatively, one can also apply 

normal vector addition first, 

then apply “mod 2” to each 

element:

1 0 1 1 ⊕ 0 1 0 1

= 1 1 1 2
mod 2

1 1 1 0



Examples
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 Normal matrix multiplication:

 Matrix multiplication in GF(2):

7 4 3
2 5 6
1 8 9

−2 4
3 −8
−7 6

=
−23 14
−31 4
−41 −6

7 × −2 + 4 × 3 + 3 × −7 = −14 + 12 + −21

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

=
0 1
1 0
0 0

1 ∙ 1  0 ∙ 0  1 ∙ 1 = 101 Alternatively, one can also apply normal 

matrix multiplication first, then apply 

“mod 2” to each element:

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

=
2 1
1 0
2 2

mod 2 0 1
1 0
0 0



BSC and the Error Pattern
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 For one use of the channel,

 Again, to transmit k information bits, the channel is used n

times. 

BSCx y

Encoderb x BSC y

= y x e

error pattern

1 k 1 n

Its nonzero elements mark the 

positions of transmission error in y



Linear Block Codes
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 Definition: C is a (binary) linear (block) code if and 

only if C forms a vector (sub)space (over GF(2)). 

 Equivalently, this is the same as requiring that

 Note that any (non-empty) linear code C must contain 0.

 Ex. The code that we considered in Problem 5 of HW3 is

Is it a linear code?

In case you forgot about the concept of vector space,…

if പ𝐱 1 and പ𝐱 2 ∈ C, then പ𝐱 1 പ𝐱 2 ∈ C.

C = 00000,01000,10001,11111



Linear Block Codes: Motivation (1)
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 Why linear block codes are popular?

 Recall: General block encoding

 Characterized by its codebook.

 Can be realized by combinational/combinatorial circuit.

 If lucky, can used K-map to simplify the circuit.

 പ 1
𝐬പ 2

𝐬പ  

𝐬പ  

𝐱പ 1

𝐱പ 2

𝐱പ  

𝐱പ  

 = 2𝑘 possibilities

Choose  = 2𝑘 from 

2𝑛 possibilities to be 

used as codewords.
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Linear Block Codes: Motivation (2)
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 Why linear block codes are popular?

 Linear block encoding is the same as matrix multiplication.

 See next slide.

 The matrix replaces the table for the codebook.

 The size of the matrix is only 𝑘 × 𝑛 bits.

 Compare this against the table (codebook) of size 2𝑘 × 𝑘 + 𝑛 bits for 

general block encoding.

 Linearity  easier implementation and analysis

 Performance of the class of linear block codes is similar to 

performance of the general class of block codes.

 Can limit our study to the subclass of linear block codes 

without sacrificing system performance.



Linear Block Codes: Generator Matrix
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For any linear code, there is a matrix

called the generator matrix

such that, for any codeword പ𝐱, there is a message vector ഫ𝐛
which produces പ𝐱 by

𝐆 =

പ𝐠
1

പ𝐠
2

⋮

പ𝐠
𝑘

𝑘×𝑛

പ𝐱 = ഫ𝐛𝐆 =

𝑗=1

𝑘

𝑏𝑗ഫ𝐠
𝑗

mod-2 summation

Note: 

(1) Any codeword can be expressed as a linear combination of the 

rows of G

(2) 𝐶 = ഫ𝐛𝐆: ഫ𝐛 ∈ 0,1 𝑘 Note also that, given a matrix 𝐆, the (block) 

code that is constructed by (2) is always linear.



Example
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 Find the codeword for the message b = [1 0 0]

 Find the codeword for the message b = [0 1 1]

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 0

 
 

=  
 
 

G



Example
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 Find the codeword for the message b = [1 0 0 0]

 Find the codeword for the message b = [0 1 1 0]

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 0 1 0 1 1 0

1 0 1 0 1 0 1

 
 
 =
 
 
 

G



Linear Block Codes: Examples
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 Repetition code: പ𝐱 = 𝑏 𝑏 ⋯ 𝑏
 𝐆 = 1 1 ⋯ 1

 പ𝐱 = ഫ𝐛𝐆 = 𝑏𝐆 = 𝑏 𝑏 ⋯ 𝑏

 𝑅 =
𝑘

𝑛
=

1

𝑛

 Single-parity-check code: പ𝐱 = ഫ𝐛 ;
𝑗=1

𝑘

𝑏𝑗

 𝐆 = 𝐈𝑘×𝑘; ഫ𝟏
𝑇

 𝑅 =
𝑘

𝑛
=

𝑘

𝑘+1

parity bit

𝑏 𝐱
0 0 0 0

1 1 1 1

𝑏 𝐱
0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0



Vectors representing 3-bit codewords
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Triple-repetition code Parity-check code

Representing the codewords in the two examples on the previous slide as vectors:



Even Parity vs. Odd Parity
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 Parity bit checking is used occasionally for transmitting ASCII 

characters, which have 7 bits, leaving the 8th bit as a parity 

bit.

 Two options:

 Even Parity: Added bit ensures an even number of 1s in each 

codeword.

 A: 10000010

 Odd Parity: Added bit ensures an odd number of 1s in each 

codeword.

 A: 10000011

Related Idea:



Even Parity vs. Odd Parity
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 Even parity and odd parity are properties of a codeword (a 

vector), not a bit.

 Note: The generator matrix 𝐆 = 𝐈𝑘×𝑘; ഫ𝟏
𝑇 previously 

considered produces even parity codeword

പ𝐱 = ഫ𝐛 ;

𝑗=1

𝑘

𝑏𝑗

 Q: Consider a code that uses odd parity. Is it linear?



Error Control using Parity Bit
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 If an odd number of bits (including the parity bit) are 

transmitted incorrectly, the parity will be incorrect, thus 

indicating that a parity error occurred in the transmission. 

 Ex. 

 Suppose we use even parity. 

 Consider the codeword പ𝐱 = 10000010

 Suitable for detecting errors; cannot correct any errors



The ASCII Coded Character Set
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[The ARRL Handbook for Radio Communications 2013]

0 16 32 48 64 80 96 112

US UK

(American Standard Code for Information Interchange)



Error Detection
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 Error detection: the determination of whether errors are present in a 
received word

 usually by checking whether 
the received word is one of the 
valid codewords.

 When a two-way channel exists between source and destination, the 
receiver can request retransmission of information containing 
detected errors. 

 This error-control strategy is called automatic-repeat-request (ARQ).

 An error pattern is undetectable if and only if it causes the received 
word to be a valid codeword other than that which was transmitted.

 Ex: In single-parity-check code, error will be undetectable when the number 
of bits in error is even.

Two types of error control:

1. error detection

2. error correction

 പ 1
𝐬പ 2

𝐬പ  

𝐬പ  

𝐱പ 1

𝐱പ 2

𝐱പ  

𝐱പ  

 = 2𝑘 possibilities

Choose  = 2𝑘 from 

2𝑛 possibilities to be 

used as codewords.



Error Correction
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 In FEC (forward error correction) system, when the 

decoder detects error, the arithmetic or algebraic structure

of the code is used to determine which of the valid 

codewords was transmitted.

 It is possible for a detectable error pattern to cause the 

decoder to select a codeword other than that which was 

actually transmitted. The decoder is then said to have 

committed a decoding error.



Square array for error correction by 

parity checking.
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 The codeword is formed by 
arranging k message bits in 
a square array 
whose rows and columns 

are checked by 2 𝑘 parity 
bits.

 A transmission error in one 
message bit causes a row 
and column parity failure 
with the error at the 
intersection, so single 
errors can be corrected.

[Carlson & Crilly, p 594]

𝑏1 𝑏2 𝑏 𝑝1
𝑏 𝑏5 𝑏6 𝑝2
𝑏7 𝑏8 𝑏9 𝑝 
𝑝 𝑝5 𝑝6

𝐛 = 𝑏1, 𝑏2,, 𝑏9

𝐱 = 𝑏1, 𝑏2,, 𝑏9, 𝑝1, 𝑝2,, 𝑝6



Example: square array 
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 𝑘 = 9

 2 9 = 6 parity bits.

[Carlson & Crilly, p 594]

1 0 1
1 1 0
1 0 0

= 101110100

= 101110100_ _ _ _ _ _ 𝒚 = 100110100001111

𝑏1 𝑏2 𝑏 𝑝1
𝑏 𝑏5 𝑏6 𝑝2
𝑏7 𝑏8 𝑏9 𝑝 
𝑝 𝑝5 𝑝6

𝐛 = 𝑏1, 𝑏2,, 𝑏9

𝐱 = 𝑏1, 𝑏2,, 𝑏9, 𝑝1, 𝑝2,, 𝑝6



Weight and Distance
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 The weight of a vector is the number of nonzero coordinates in 
the vector.

 The weight of a vector 𝐱 is commonly written as 𝒘 𝐱 .
 Ex. 𝑤 010111 =

 For BSC with cross-over probability 𝑝 < 0.5, error pattern with 
smaller weight (less #1s) are more likely to occur.

 The Hamming distance between two n-bit blocks is the 
number of coordinates in which the two blocks differ.
 Ex. 𝑑 010111,011011 =

 Note: 
 The Hamming distance between any two vectors equals the weight of their 

sum.

 The Hamming distance between the transmitted codeword 𝐱 and the 
received vector 𝐲 is the same as the weight of the corresponding error 

pattern 𝐞.



Review: Minimum Distance (dmin)
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The minimum distance (dmin) of a block code is the 

minimum Hamming distance between all pairs of distinct 

codewords.

 Ex. Problem 5 of HW4:

 Ex. Repetition code: 



dmin: two important facts
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 For any linear block code, the minimum distance (dmin) 

can be found from minimum weight of its nonzero

codewords.

 So, instead of checking 2
𝑘

2
pairs, 

simply check the weight of the 2𝑘 codewords.

 A code with minimum distance dmin can

 detect all error patterns of weight w ≤ dmin-1.

 correct all error patterns of weight w ≤ 
𝑑min−1

2
.

the floor function



dmin is an important quantity
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പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

പ𝐜 5

പ𝐜 6

പ𝐜 7

പ𝐜 8

Recall: Codebook construction

Choose  = 2𝑘 from 2𝑛

possibilities to be used as 

codewords.  



dmin is an important quantity

59

 To be able to detect all w-bit errors, we need 𝑑min ≥ 𝑤 + 1.

 With such a code there is no way that w errors can change a 

valid codeword into another valid codeword. 

 When the receiver observes an illegal codeword, it can tell that 

a transmission error has occurred. 

പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

ഫ𝒚 = ഫ𝒙⊕ പ𝒆

പ𝒆 The received vector ഫ𝒚 can be 

calculated from 

ഫ𝒚 = ഫ𝒙⊕ പ𝒆.ഫ𝒙 = പ𝐜 5



dmin is an important quantity
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 To be able to detect all w-bit errors, we need 𝑑min ≥ 𝑤 + 1.

 With such a code there is no way that w errors can change a 

valid codeword into another valid codeword. 

 When the receiver observes an illegal codeword, it can tell that 

a transmission error has occurred. 

പ𝐜  പ𝐜 1

പ𝐜 2

പ𝐜  

ഫ𝒙

പ𝒆

When 𝑑min > 𝑤 , there is no way 

that 𝑤 errors can change a valid 

codeword into another valid 

codeword.

When 𝑑min = 𝑤 , it is possible 

that 𝑤 errors can change a valid 

codeword into another valid 

codeword.



dmin is an important quantity
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 To be able to correct all w-bit errors, we need 𝑑min ≥ 2𝑤 + 1.

 This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other 

codeword.

dmin

2

പ𝐜  പ𝐜 1

പ𝐜 2

ഫ𝒙 = പ𝐜  

പ𝐜 5



Example
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Consider the code

 Is it a linear code?

 dmin = 

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.

C ∈ 0000000000, 0000011111, 1111100000, and 1111111111

⊕ പ𝐜 1 പ𝐜 2 പ𝐜  പ𝐜  

പ𝐜 1

പ𝐜 2

പ𝐜  

പ𝐜  

0000000000

0000011111

1111100000

1111111111


